

MS4 £4.00

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

SUMMER 2009

Р	N	1T
•		

CH2

Section A

C	Conducts	electricity	Melting te	emperature	Bonding		
	Yes No ✓		High	Low	Covalent	Ionic	
			\checkmark		\checkmark		
(i)	Ba +	$2 H_2 O \rightarrow$	Ba(OH) ₂	+ H ₂			
(ii)	Reagen	it: e.g. si	ulfuric acid				
	Observ	ation: white	precipitate				
(i)	There is no free rotation about a double bond / the compound has two different groups either side of the double bond						
(ii)	potassi	um dichromate	$e(VI) / K_2 Cr_2 C$	07 / dichromat	$e / Cr_2 O_7^{2-}$		
(iii)	oxidati	on / redox					
(iv)	(relativ	e) molecular r	nass / molar m	lass			
(i)	F_2 +	$2 e^{-} \rightarrow$	2 F [−]				
(ii)	(A) flue fluorine	orine (atom) n e has a high el	eeds to gain ar ectronegativity	n electron to h	ave a full (oute	r) shell /	

Section A Total [10]

Section **B**

5. (a) (i) atom economy =
$$34 \times 100$$
 (1) = 19 (1) [2]
(2 × 53.5) + 74

(ii)
$$45 \text{ g} / 100 \text{ cm}^3 = 450 \text{ g dm}^{-3}$$
 (1)
concentration = $\frac{450}{111}$ = 4.05 (accept 4.1) mol dm⁻³ (1) [2]

(iii)
$$Ca + 2HCl \rightarrow CaCl_2 + H_2$$
 [1]

(iv) orange-red / brick red [1]
(v) Reagent: silver nitrate / AgNO₃ / Ag⁺ / silver ions [1]

(vi)

(vii) 111g of calcium chloride removes / react with 2 ×18.0 g water (1)

 $\therefore 5.55 \text{ g of calcium chloride mass removes / reacts with} = \frac{5.55 \times 2 \times 18.0}{111}$

$$= 1.80 (g) (1)$$

or in moles:

```
moles of calcium chloride 0.05(1) moles of water 0.10(1)
```

[2]

(viii) a covalent bond where one of the atoms (of the bond) provides both electrons [1]

Total [13]

PMT

6.	<i>(a)</i>	(i)	ightarrow	Na ⁺	CI-			[1]
		(ii)	6:6					[1]
		(iii)	8 : 8 Cs ⁺ io	1) / cation is much	larger than the Cl ^{$-$} ion / anion (1)		[2]
	<i>(b)</i>	(i)	Na ⁺ io	s are attracted to	$(\delta$ -) oxygen of water molecules	(1)		
			Cl ⁻ io	are attracted to ($(\delta +)$ hydrogen of water molecules	(1)		[2]
		(ii)	I ∴	Mass of evaporat Mass of evaporat Mass of sodium of	ting basin + sodium chloride solut ting basin chloride solution	tion	= = =	140.57 g 72.00 g 68.57 g
			<i>.</i>	Mass of evaporat Mass of evaporat Mass of dry sodi	ting basin + dry sodium chloride ting basin um chloride		= = =	90.57 g 72.00 g 18.57 g
								[1]
			II	50.00 g				[1]
			III	$2 \times 18.57 = 3$	87.14 g / 100 g water			[1]
			IV	temperature				[1]
	(c)	the ou	iter elec	on of an atom is	an s electron			[1]
	(d)		4 Na	+ TiCl ₄ \rightarrow	Ti + 4 NaCl			
			0	+4 (-1 x 4)	0 4 (+1) 4(-1)	(1)		
		soc	lium has	ncreased its oxid	ation number i.e. oxidation	(1)		[2]

Total [13]

PMT

(b) The chlorine molecule is split by UV light (1) by homolytic fission (1) (i) giving two chlorine free radicals

$$Cl_2 \rightarrow 2 Cl \bullet (1)$$

In the propagation stage radicals react to produce new radicals

$$CH_{3}Cl + Cl \bullet \rightarrow \bullet CH_{2}Cl + HCl (1)$$

$$\bullet CH_{2}Cl + Cl_{2} \rightarrow CH_{2}Cl_{2} + Cl \bullet (1)$$

In the termination stage two radicals combine giving dichloromethane

$$\bullet CH_2Cl + Cl \bullet \rightarrow CH_2Cl_2 \quad (1)$$
[6]

(QWC) organise information clearly and coherently, using specialist vocabulary when appropriate [1]

- (accept the displayed formula of 1,1-dichloroethane) (1)
- formed by the reaction together of two •CH₂Cl radicals (1)

[3]

[1]

Total [15]

8.	(<i>a</i>)	(i)	Ι	the colour changes from red/brown/orange to colourless	[1]		
			II	the name of the compound is 1,2,3-tribromobutane / 1,3-dibromobutan-2-ol / 1,2-dibromobutan-3-ol	[1]		
		(ii)	Ι	(warm) with (aqueous) sodium hydroxide / NaOH / alkaline solut	ion [1]		
			II	this would give a white precipitate with aqueous silver nitrate / a source of chloride ions	[1]		
			III	the precipitate is not completely soluble in dilute aqueous ammon the precipitate is soluble in concentrated aqueous ammonia	ia / [1]		
	(b)	(i)	The sa charac accept	ample would give a (broad) signal at $2500 - 3550 \text{ cm}^{-1}$ (1) cteristic of the O–H bond (1) t answers based on C–O	[2]		
		(ii)	Both r Both r But-2- Hydro therefe	molecules possess van der Waals forces (1) molecules possess dipole-dipole forces (1) e.g. $C^{\delta+}$ - $Br^{\delta-}$ or $C^{\delta+}$ - C- en-1-ol has hydrogen bonding and the bromo compound does not (ogen bonding is stronger than other intermolecular forces (1) ore more energy is needed to separate the molecules (1)	$DH^{\delta}(1)$		
		(QWC	<i>(C)Ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear</i> [1] <i>Select and use a form and style of writing appropriate to purpose and to complex subject matter</i> [1]				
				Τα	tal [15]		

(a)	(i)	lone pair / bonding pair repulsion is greater than bonding pair / bonding pair repulsion	[1]
	(ii)	nitrogen and hydrogen have different electronegativities (1) and this results in polarity / unequal electron distribution in the bond (1)	[2]
(b)	(i)	e.g. $H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H^{2} \rightarrow H \xrightarrow{H} H^{2} \xrightarrow{H} H^{2}$	
		equation using displayed formulae (1)	
		ethane named (1)	[2]
	(ii)	e.g. spectacle frames / teeth brace	[1]
	(iii)	109° 28' / 109½° / 109°	[1]
(c)	(i)	60 – 70 atmospheres	[1]
	(ii)	I e.g. Al ₂ O ₃ / porous pot / concentrated sulphuric acid / concentrated phosphoric acid	[1]
		II elimination / dehydration	[1]

9.

PMT

Total [14]

Section B Total [70]

GCE Chemistry (New) MS (Summer 2009) 29 July 2009